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Abstract

A semi!analytic method is presented for the analysis of transient response of one!dimensional distributed
parameter systems[ Replacing time di}erentials by _nite di}erence\ the governing partial di}erential equa!
tions are reduced to di}erenceÐdi}erential equations[ The solutions of derived ordinary di}erential equations
are given in exact and closed form by distributed transfer function method[ Complex systems that contain
many one!dimensional sub!systems are also studied[ Numerical results show that the e.ciency and accuracy
of the method are excellent[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Distributed parameter dynamic systems that are composed of multiple one!dimensional sub!
systems\ such as various frame structures\ bridge structures and pipe systems\ are widely used in
engineering[ Their basic sub!systems are one!dimensional in space[ The static response analysis of
these problems is mature[ There are many methods and commercial software available to analyze
the problems and generally the solutions are accurate enough[ The solutions of transient response
problems are generally analyzed by numerical methods\ such as _nite element method\ and analytic
solutions are possible only in very few simple cases[ However\ numerical methods are at the cost
of computer memory and CPU time and are ine.cient for some cases\ such as high frequency
response[

Recently\ Yang and Tan "0881#\ Yang "0883#\ Tan and Chung "0882# have published a series of
research work on one!dimensional distributed parameter systems[ Applying Laplace transform to
time t\ they reduced the partial di}erential equations of a one!dimensional dynamic system into
ordinary di}erential equations with one spatial variable and one complex parameter[ The solutions
are given by transfer function method "TFM# in frequency domain[ They also presented the
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method for the analysis of complex systems composed of multiple one!dimensional sub!systems[
For static and frequency responses\ their method gives exact and closed form solutions[

Zhou and Yang "0884\ 0885# and Yang and Zhou "0884\ 0885# further extended the transfer
function method to the analysis of two!dimensional problems[ For cylindrical shells\ they expanded
the displacements in Fourier|s series along circumferential direction to reduce the original problems
into the solutions of a series of decoupled di}erential equations that can be solved by transfer
function method[ For plane deformation and plate bending\ they proposed the strip distributed
transfer function method "SDTFM# in which numerical discretization is introduced along one
spatial coordinate direction[ However\ for transient response\ the applications of TFM and
SDTFM are di.cult because both methods ask to _nd the inverse Laplace transforms of the
solutions in state space[

In this paper\ a semi!analytical method is presented for the analysis of transient response of
one!dimensional distributed parameter systems[ The basic idea of the method is replacing time
di}erentials by _nite di}erence to reduce the original partial di}erential equations into di}erenceÐ
di}erential equations that can be solved by state space technique in exact and closed form[ The
main advantages of the method are threefold[ First\ it avoids the di.culties in _nding inverse
Laplace transform of the transfer function solution[ Second\ the exact and closed form solution
on spatial variable reduces the error introduced by numerical discretization so that the method
has very high precision[ Third\ the method needs much less elements than that of FEM and the
computational e.ciency is higher[ Moreover\ the computer coding is easy for the method and it is
possible to treat di}erent problems in a systematic way like FEM in programming[

1[ Basic formulations

In this section\ a one!dimensional sub!system is _rst studied[ The sub!system is supposed to be
homogeneous so that the partial di}erential equations are of constant coe.cients[

The governing dynamic equations of a one!dimensional distributed parameter system are
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Where u¹k"x#\ v¹k"x# and ¹̀ l"t# are prescribed functions\ a" j#
lki \ b" j#

lki and x" j#
lki are constants\ xj " j � 0\ 1#

are the ends of the sub!system\ and N0¦N1 � N � Sn
k�0 nk[
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De_ne vector F\ state space vector h"x\ t# and its sub!vector hk"x\ t# as
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Equation "0# are cast into matrix form
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BÞ and B\ CÞ and C have the same forms as that of AÞ and A except that {aijp| are replaced by {bijp|
and {cijp| in AÞ and Aij\ respectively[

Similarly\ boundary conditions "2# are cast into
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with 9k×m being k×m zero matrix[ M"0# and N"0#\ M"1# and N"1# have the same de_nitions as that of
M"9# and N"9# except a"k#

ijp are replaced by b"k#
ijp and x"k#

ijp in Mij and Nij\ respectively[
Using the di}erence formulas introduced by Hilber and Hughes "0867# and Hughes "0872#
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where a �"11u:1t1#\ v �"1u:1t#\ d � u\ the subscript {t| denotes that the function takes its value at
time t\ so do the other subscripts in "6#[ u\ g\ b are adjustable parameters[ Taking u � 0\ "6# is
corresponding to Newmark|s method\ taking b � 0

5
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1
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Solving at¦uDt from "6c# and substituting it into "6b#\ we have
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The external excitations are also supposed to be linear for t $"t\ t¦uDt#

ft¦uDt � ft¦u" ft¦Dt−ft# "8#

Replacing time di}erentials in "4# by _nite di}erence formulas of "7# and solving F\ the following
di}erenceÐdi}erential equations are derived

Ft¦uDt � D = ht¦uDt¦D"9# = ht¦D"0# = h¾t¦D"1# = h�t¦E"9# = Ft¦E"0# = Fþt¦E"1# = FÝt¦f¹t¦f¹t¦Dt "09#

in which "¾# �"1:1t#\ "�# �"11:1t1#\ and
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The solution of "00# under boundary restriction "01# is
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Having ht¦uDt"x# known from "02#\ h¾ t¦uDt"x# and h� t¦uDt"x# are calculated by the following
formulas
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Therefore\ if ht\ h¾ t\ h� t are known\ ht¦Dt\ h¾ t¦Dt\ h� t¦Dt can be found from the above derived formulas[
Because qt¦uDt of "00# is related to both the external loads and the transient response ht\ h?t\ h¾ t\

h¾?t\ h� t\ h�?t\ the integral of "02# is not easy to be calculated exactly[ Approximate integral is proposed
for it[ The region ðx0\ x1Ł is divided into n sub!regions ðx"i#\ x"i¦0#Ł with x0 � x"0# ³
x"1# ³ = = = ³ x"i# ³ x"i¦0# ³ = = = ³ x"n¦0# � x1[ In each sub!region\ ht\ h?t\ h¾ t\ h¾?t\ h� t\ h�?t are interpolated
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Fig[ 0[ A one!dimensional distributed parameter system[

by their values at x"i# "i � 0\ 1\ [ [ [ \ n¦0# in low order polynomials[ Then\ the integral of "02# can
be done with no di.culties[ For the part of integral of "02# related to external loads\ numerical
approximation can also be used[ The bene_ts of this approximation are the saving of CPU time
and the possibility of computer codes for general purposes[ In the numerical examples presented
in the following sections\ these approximate procedures are used[

2[ Complex systems composed of multiple 0!dimensional sub!systems

Dynamic systems made of multiple one!dimensional sub!systems are studied in this section[
Figure 0 is an example where the dynamic system includes two beams\ a rigid body\ a spring!
damper\ a spring and a bar[ The formulas derived previously are valid for each one!dimensional
sub!system[ The ends of each one!dimensional sub!system are called nodes and the nodal parameter
vector are de_ned as
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Bk � ð9pk×rk Ipk×pk
9pk×skŁ

with rk � Sk−0
j�0 nj and sk � pk¦Sn

j�k¦0 nj[
For a linear system\ the generalized force vectors are related to state space vector h"x\ t# by

following constitutive relation

s"x\ t# � S = h"x\ t# "07#

where S is the constitutive matrix[
At time t¦uDt\ we have
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At each node\ assembling equilibrium equations according to equilibrium of forces\ following
simultaneous linear algebraic equations will be obtained

K = d � Q "10#

in which K\ d and Q are the global sti}ness matrix\ nodal parameter vector and load vector\
respectively[ Applying proper boundary conditions\ "10# is solved in the standard way to give the
nodal parameter vector[ Then\ ht¦uDt"x# can be found from "02# for each subsystem[

3[ Transient response of a simple EulerÐBernoulli beam

For a speci_c problem\ the dynamic equations and boundary conditions are generally much
simpler than that of Section 1[ Therefore\ more direct derivations will be used in the following two
sections[ Moreover\ to make the statements simpler\ the Wilson!u method is used[ The transient
response of a simple EulerÐBernoulli beam is _rst analyzed to illustrate the e.ciency of the present
method[ The governing equations are
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Boundary conditions] "0# w"xi\ t# � w½ i"t# or EI
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in which EI is the bending sti}ness\ c is the damping coe.cient\ rA is the mass density per unit
length\ w"x\ t# is the ~exure\ f"x\ t# is the external excitation\ w9"x#\ v9"x#\ w½ i"t#\ Q	i"t#\ b	i"t# and
M	 i"t# "i � 0\ 1# are given functions[

Applying the Wilson!u method to "11# gives the following di}erenceÐdi}erential equations
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The matrix form of boundary conditions "13# is

M = ht¦uDt"x0#¦N = ht¦uDt"x1# � ugt¦Dt¦"0−u#gt "17#

with
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Fig[ 1[ Simply supported beam subjected to alternating load[
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where subscript {t¹| takes values t or t¦Dt\ i � 0 and 1\ BL and BR are 1×3 matrices called the
selective matrices of boundary conditions at the left and right ends of the beam\ respectively[ The
ith row of BL is corresponding to the ith boundary condition listed in "13#[ If the ith boundary
condition at the left end is a displacement condition\ then

BL
i\1i−0 � 0^ BL

i\ j � 9 " j � 1i−0#

Otherwise

BL
i\1i � 0^ BL

i\ j � 9 " j � 1i#

BR is similar to BL except that it is related to the right end of the beam[
A simply supported beam subjected to an alternating load q � q9"x# sin vt "see Fig[ 1# is analyzed

by the present method and numerical results are compared with that of the _nite element method[
The material and geometric parameters are rA � 09\ EI � 19\ c � 04\ L � 2\ and u � 0[3[ Numeri!
cal results are given in Tables 0 and 1 where q9"x# � 0999dðx−"L:1#Ł\ v � 27 and 014\ respectively[
It is easy to see that our method is very accurate and e.cient[ Taking the whole beam as one
element\ its precision is better than that of the _nite element method using 29 elements\ and the
CPU time of the method is only about 39) of that consumed by FEM[ Along with the increment
of frequency v\ the advantages of our method becomes more obvious[ When v ¾ 27\ the maximum
relative error of FEM using 29 elements is within 0)[ When v � 014\ it increases to 7)[ However\
for our method\ this error keeps within 9[4)[ From Table 2\ in which the beam is subjected to the
distributed load q9"x# � 0999"05:L3#ðx−"L:1#Ł3\ the same conclusions can be drawn[ Undoubtedly\
this advantage is very useful\ especially for high frequency response analysis\ on!line control and
real!time simulation[
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Table 0
Middle point displacement of simply supported beam "v � 27\ Dt � 9[90#

t � 0 t � 1 t � 2 t � 3 t � 4 CPU time Method

9[9792 −9[5900 −9[7043 −9[5917 −9[2928 305 This paper
9[9712 −9[4617 −9[6375 −9[3834 −9[0580 088 FEM09 elements
9[9792 −9[4885 −9[7012 −9[4836 −9[1861 416 FEM19 elements
9[9792 −9[5997 −9[7042 −9[4886 −9[2927 0957 FEM29 elements
9[9792 −9[5909 −9[7048 −9[5997 −9[2942 1402 FEM49 elements
9[9792 −9[5909 −9[7059 −9[5909 −9[2944 00\998 FEM099 elements

Table 1
Middle point displacement of simply supported beam "v � 014\ Dt � 9[994#

t � 0 t � 1 t � 2 t � 3 t � 4 CPU time Method

9[0610 9[96015 9[91806 9[99589 9[99691 714 This paper
9[0611 9[98086 9[93391 9[99741 9[91093 213 FEM09 elements
9[0608 9[96087 9[93962 9[99630 9[99632 0990 FEM19 elements
9[0619 9[96014 9[92024 9[99696 9[99697 1930 FEM29 elements
9[0619 9[96098 9[91820 9[99590 9[99699 3880 FEM49 elements
9[0619 9[96096 9[91892 9[99577 9[99588 08\637 FEM099 elements

Table 2
Middle point displacement of simply supported beam "v � 65\ Dt � 9[997#

t � 0 t � 1 t � 2 t � 3 t � 4 CPU time Method

9[096321 9[948442 9[910812 9[997130 −9[909012 424 This paper
9[029107 9[955445 9[916615 9[994777 −9[907235 233 FEM09 elements
9[097628 9[948820 9[911299 9[997081 −9[909410 861 FEM19 elements
9[096477 9[948482 9[910856 9[997128 −9[909062 0590 FEM29 elements
9[096227 9[948407 9[910785 9[997137 −9[909987 3969 FEM49 elements
9[096292 9[948496 9[910774 9[997138 −9[909976 01\370 FEM099 elements

4[ Transient response of frame structures

To show the solution procedures and e.ciency of the present method in the analysis of complex
one!dimensional systems\ frame structures made of simple elastic beams are studied here[ The local



J[ Zhou\ Z[ Fen`:International Journal of Solids and Structures 25 "0888# 1796Ð17131707

Fig[ 2[ Local coordinate system of the beam[

coordinate system of the beam is de_ned as shown in Fig[ 2 where y and z are the principle axes
of inertial of the cross!section of the beam[ The dynamic equations are

EA
11u

1x1
−rA

11u

1t1
¦fx � 9\ EIz

13v

1x3
¦rA

11v

1t1
−rIz

13v

1x1 1t1
−fy � 9 "18a\b#

EIy

13w

1x3
¦rA

11w

1t1
−rIy

13w

1x1 1t1
−ft � 9\ aGIx

118

1x1
−rIx

118

1t1
¦mx � 9 "18c\d#

where u\ v\ w are the displacements in x!\ y! and z!directions\ 8 is the torsion angle of the beam
cross!section about x!axis\ Ix\ Iy\ Iz are the rotation inertias about x\ y and z axes[ a is the torsion
coe.cient of the cross!section\ fx\ fy and fz are distributed external excitations[

Because the di}erential equations in "18# are not coupled\ to raise the computer e.ciency\ the
state space vectors of the beam are de_ned as

h0\t¦uDt � 6ut¦uDt

dut¦uDt

dx 7
T

"29a#

h1\t¦uDt � 6vt¦uDt

dvt¦uDt

dx
d1vt¦uDt

dx1

d2vt¦uDt

dx2 7
T

"29b#

h2\t¦uDt � 6wt¦uDt

dwt¦uDt

dx
d1wt¦uDt

dx1

d2wt¦uDt

dx2 7
T

"29c#

h3\t¦uDt � 68t¦uDt

d8t¦uDt

dx 7
T

"29d#

and "18# are cast into the following state space forms

d
dx

hi\t¦uDt � Fi = hi\t¦uDt¦fi "i � 0\ 1\ 2\ 3# "20#

where

F0 � &
9 0

5r

Eu1Dt1
9'\ f0 � 6

9

f0�7
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9 9 0 9

9 9 9 0
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K

H

H
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9 0 9 9

9 9 0 9
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−
5rA

EIyu
1Dt1

9
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G

G

G

l

\ f2 �

F

H

j

J

H

f

9

9

9

f2�

J

G

f

F

G

j

F3 � &
9 0

5r

aGu1Dt1
9'\ f3 � 6

9

f3�7
and f0�\ f1�\ f2� and f3� have similar de_nitions as q3[

The nodal displacement vectors of the beam are de_ned as

g0 � "ut¦uDt"x0# ut¦uDt"x1##T "21a#

g1 � 6vt¦uDt"x0#
d
dx

vt¦uDt bx�x0

vt¦uDt"x1#
d
dx

vt¦uDt bx�x1
7

T

"21b#

g2 � 6wt¦uDt"x0#
d
dx

wt¦uDt bx�x0

wt¦uDt"x1#
d
dx

wt¦uDt bx�x1
7

T

"21c#

g3 � "8t¦uDt"x0# 8t¦uDt"x1##T "21d#

The boundary conditions are

Mi = hi\t¦uDt"x0#¦Ni = hi\t¦uDt"x1# � gi "22#

with

Mi � $
0 9

9 9%\ Ni � $
9 9

0 9% for i � 0\ 3 and

Mi � $
I1×1 91×1

91×1 91×1%\ Ni � $
91×1 91×1

I1×1 91×1% for i � 1 and 2[

In the local coordinate system\ the internal force vector is

s � "sT
0 sT

1 sT
2 sT

3# "23#

where
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Fig[ 3a[ A plane frame subjected to in!plane alternating load[

Fig[ 3b[ Transient response of node 0[

si � Si = hi\ S0 � ð9 EAŁ\ S3 � ð9 aGIxŁ

S1 � $
9 9 EIz 9

9 9 9 −EIz%\ S2 � $
9 9 EIy 9

9 9 9 −EIy%
Three di}erent frame structures are analyzed to show the applications of the method[ Each frame

structure is taken to consist of simple beams with the same material and geometric parameters[

"0# Transient response of a plane frame structure subjected to in!plane alternating load[ The plane
frame structure is shown in Fig[ 3a[ The parameters used in calculation are rA � 9[4\ EI � 19\
EA � 199\ L � 0[ Numerical results for q"y\ t# � q9"3:L1#ðy−"L:1#Ł1 sin vt\ in which q9 � 4999
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Fig[ 4a[ A plane frame subjected to out!of!plane loads[

Fig[ 4b[ Transient response in z!direction of node 1[

and v � 097\ are illustrated in Fig[ 3b[ As a comparison\ _nite element solutions using 04\ 29
and 89 elements are also shown[

"1# Dynamic response of a plane frame subjected to out!of!plane alternating load[ The plane frame
structure is shown in Fig[ 4a[ The parameters used in numerical simulation are E � 2×096\
G � 0[1×096\ rA � 09\ L � 59\ Ix � Iy � 099\ aIx � 014\ J � 199[ The distributed external
load q"x\ t# � 4999 sin"1px:L#s int[ Transient responses of nodes 0 and 1 are illustrated in Fig[
4b and Fig[ 4c in which FEM results are obtained using 29 elements[

"2# Space frame structure subjected to alternating load[ The structure is shown in Fig[ 5a[ The
material and geometric parameters are the same as that of example 1[ P0 � 4999 sin t\
P1 � 4999 sin 2t and P2 � 4999 sin 4t[ Transient responses of node A are illustrated in Figs 5bÐ
d in which FEM results use 79 elements[

5[ Conclusions

Theoretical analysis and numerical simulation show that the method presented in this paper has
the following advantages]
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Fig[ 4c[ Transient response in z!direction of node 0[

Fig[ 5a[ A space frame structure subjected to alternating loads[

Fig[ 5b[ Transient response in x!direction of node A[
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Fig[ 5c[ Transient response in y!direction of node A[

Fig[ 5d[ Transient response in z!direction of node A[

"0# It presents a new\ semi!analytical method that avoids discretization of spatial coordinates[ In
the analysis of one!dimensional distributed parameter systems\ the method takes a one!
dimensional sub!system as one element and de_nes its end as nodes[ Therefore\ the scale of
the global nodal equilibrium equations is much smaller than that of FEM\ and the solution
e.ciency is much higher[

"1# The exact and closed form solution in spatial coordinates raises the precision and e.ciency
greatly[ To _nd the transient response of a single beam\ FEM has to use many elements\
especially for high frequency response[ However\ taking a single beam as an element\ the
numerical error of our method is within 9[4) that is accurate enough for most engineering
applications[

"2# The analytic procedure is standard and systematic for di}erent physical and engineering
problems[ If the governing di}erential equations\ initial and boundary conditions are known\
the problem can be analyzed in a standard way[ So does the computer coding[ Therefore\ the
method will be attractive for commercial software[

Although the discussion is limited to di}erential equations within constant coe.cients\ the
method presented in this paper can be extended to di}erential equations with variable coe.cients
in which the solution for spatial variables should be obtained by approximate methods[
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