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Abstract

A semi-analytic method is presented for the analysis of transient response of one-dimensional distributed
parameter systems. Replacing time differentials by finite difference, the governing partial differential equa-
tions are reduced to difference—differential equations. The solutions of derived ordinary differential equations
are given in exact and closed form by distributed transfer function method. Complex systems that contain
many one-dimensional sub-systems are also studied. Numerical results show that the efficiency and accuracy
of the method are excellent. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Distributed parameter dynamic systems that are composed of multiple one-dimensional sub-
systems, such as various frame structures, bridge structures and pipe systems, are widely used in
engineering. Their basic sub-systems are one-dimensional in space. The static response analysis of
these problems is mature. There are many methods and commercial software available to analyze
the problems and generally the solutions are accurate enough. The solutions of transient response
problems are generally analyzed by numerical methods, such as finite element method, and analytic
solutions are possible only in very few simple cases. However, numerical methods are at the cost
of computer memory and CPU time and are inefficient for some cases, such as high frequency
response.

Recently, Yang and Tan (1992), Yang (1994), Tan and Chung (1993) have published a series of
research work on one-dimensional distributed parameter systems. Applying Laplace transform to
time ¢z, they reduced the partial differential equations of a one-dimensional dynamic system into
ordinary differential equations with one spatial variable and one complex parameter. The solutions
are given by transfer function method (TFM) in frequency domain. They also presented the
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method for the analysis of complex systems composed of multiple one-dimensional sub-systems.
For static and frequency responses, their method gives exact and closed form solutions.

Zhou and Yang (1995, 1996) and Yang and Zhou (1995, 1996) further extended the transfer
function method to the analysis of two-dimensional problems. For cylindrical shells, they expanded
the displacements in Fourier’s series along circumferential direction to reduce the original problems
into the solutions of a series of decoupled differential equations that can be solved by transfer
function method. For plane deformation and plate bending, they proposed the strip distributed
transfer function method (SDTFM) in which numerical discretization is introduced along one
spatial coordinate direction. However, for transient response, the applications of TFM and
SDTFM are difficult because both methods ask to find the inverse Laplace transforms of the
solutions in state space.

In this paper, a semi-analytical method is presented for the analysis of transient response of
one-dimensional distributed parameter systems. The basic idea of the method is replacing time
differentials by finite difference to reduce the original partial differential equations into difference—
differential equations that can be solved by state space technique in exact and closed form. The
main advantages of the method are threefold. First, it avoids the difficulties in finding inverse
Laplace transform of the transfer function solution. Second, the exact and closed form solution
on spatial variable reduces the error introduced by numerical discretization so that the method
has very high precision. Third, the method needs much less elements than that of FEM and the
computational efficiency is higher. Moreover, the computer coding is easy for the method and it is
possible to treat different problems in a systematic way like FEM in programming.

2. Basic formulations

In this section, a one-dimensional sub-system is first studied. The sub-system is supposed to be
homogeneous so that the partial differential equations are of constant coefficients.
The governing dynamic equations of a one-dimensional distributed parameter system are

nok 0 0%\ O'up(x, 1)
amci+bmi7+cm'i7 \7= 'n xal m=1,2,...,”l 1
g;x o oy ka o0 0 ) )
where u,(x, ) (k =1,2,...,n) are field functions, such as displacements, forces, temperature, etc.

n, is the highest differential order of u.(x, ) with spatial coordinate X, @, b,u» and c,,; are
constants, f,,(x, ) (m=1,2,...,n) are external excitations.
Differential eqns (1) are subjected to following initial and boundary restrictions:
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Where #(x), 7(x) and g,(¢) are prescribed functions, ay{), i) and i are constants, x; (j = 1,2)
are the ends of the sub-system, and N, + N, = N = X}_, n,.
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Define vector @, state space vector 7(x, ) and its sub-vector #,(x, f) as

8”1 anz , ann n T
q>={ il u}eC” (4)

ox™ 0x"  ox™

n=1{ni n ... nTeC” (4b)
ne(x, 1) = {uk(x, ) a”ka(;c’ z)___a"ugg, [)...ank;z’k"(f’ Z)}Tecnk k=1,2,....n) (4c)
Equation (1) are cast into matrix form
(A+E;+C§;>-q>+ <A+B§[+C§;>-n =f (5)
where
Ayipy, Qizpy oo Qipg, A, A, ... A,
i Ar1p, ooy, -vv Qo cCr A= Ay Ay oL Ay, "
o s e An An . A,
A =lay aj ... a,»,«(n_/,l)]EClx”.f

bl

B and B, C and C have the same forms as that of A and A except that ‘a;;,” are replaced by ‘b,

and ‘c;;,” in A and A, respectively.

Similarly, boundary conditions (3) are cast into

0 0? 0 0?
MO LMD = M - f NO LND = 4L N® ——J.p(i 1) = 6
< + ot 012> n(xl,)+< NS aﬁ) N(xa, 1) =7y (6)
in which

M(O) 0N x N
o) __ NxN o) __ 1 NxN
M —|:0N2XN:|€C . N _[N@ }ec

Mll M12 ... M]n
R — M, M,, ... M, .
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NI] N12 Nln
N N ... N
N(O) _ 21 22 2N GCNZXN
NNZ] NN22 DY NNZ"
1 1 1 1 : .7
MU—[O(,(/O) OC,(jl) 1(1(1)1/71)]6(? X” (l:1,2,...,N1,]:1,2,...,n)
2 2 1 ; .7
Nij = [(xt(/()) OCI(/I) l/(n —l)]ec " (l = 1’25"'5N29J = 1,2,...,”)

with 0, ., being k x m zero matrix. MV and NV, M® and N® have the same definitions as that of
M@ and N© except of) are replaced by () and y) in M;; and N,;, respectively.

ijp ijp ijp ijs

Using the difference formulas introduced by Hilber and Hughes (1978) and Hughes (1983)

Aivonr = (1 —Q)a[ +0al+At (73)
Uipons = U+ HA[{(I —))a, +Vat+6m} (7b)
0A1)?
d, one = d,+0A1, + ( > ) —2B)a,+2pa,, oa.} (7¢)
(A1)®
dt+Ar = dz +AZU, + 2ﬂ)at+2ﬁar+m} (7d)
Opone = Ui+ At{(1=)a,+ya, a}» (7e)

where a = (0*u/0r%), v = (0u/dt), d = u, the subscript ‘#’ denotes that the function takes its value at
time ¢, so do the other subscripts in (7). 0, 7, f are adjustable parameters. Taking 6 = 1, (7) is
corresponding to Newmark’s method, taking f = % and y = %, it is the Wilson-0 method.

Solving a, g, from (7c¢) and substituting it into (7b), we have

_ Y OyAt Y
Ut+()A)‘ - ﬂ@Ald +<1+ ﬁ>0t+<9At_ Zﬁ ) t+ ﬁeAtdf+0At (8a’)
: d 1 +( 1+ 1 + L d (8b)
Aiyonr = — t U, i t+0A?
o BOAD)® ' BOA: 2B BOAD> "

The external excitations are also supposed to be linear for 7e(z, 1+ 0Ar)

Jrvone =fi+0(fieai=1) )

Replacing time differentials in (5) by finite difference formulas of (8) and solving @, the following
difference—differential equations are derived

(I)H—()At =D- 77r+0At+D(O) . 71t+D(1) : ’71‘+D<2) : ﬁr""E(O) : (D1+E(l) : (Ijt_|_E(2) : (I').t+i't+ft+Ar (10)
in which (*) = (0/01), (*) = (¢*/0/), and



J. Zhou, Z. Feng|International Journal of Solids and Structures 36 (1999) 2807-2824 2811
D-—D-(a+ B+ ' ¢) po=bD-(. " By - ¢
BOAL ™ BOAL)? ) BOAL ™ B(OAL)>
DO =D (—(1-2)B+ -1 ) D?=—b-(0a(1—-LB+(1- ¢
8] poA: 28 28
E9=D- () B+ ) E0=bD-(—(1-2)B+ L ¢
BOAt  BOAr)? ) B BOA: )

D . _ 7 \R b S _ (& 7 & Loz)
E D<9At<1 2ﬁ>B+<l 2ﬂ>c>, D <A+ﬂ9AZB+ﬂ(0Al)2C>

f[ = (1 _0)]-)'1‘[’ f[+Af = 9D'ft+At

Equation (10) is cast into state space form

d

anwom =F 1 ron+qiroa (11)
in which

FO
=[F1T F? ... F' ... F,,T]TECNXN, F,~=|: ]eC”"XN

F
F(l) [0(11 1)x N{D I(n,-fl)x(n,-fl) O(n,-fl)foz)]a FE’Z):[dil diz din]
- —-— — — - — OVI’XH
F(0)=[F1T Fy ... ¥ ... FI, F,»=|:' :|

F

F? =[FY F ... FP ... FPL FP=[0,.4_1 el

Qrone = FOn+FOn) + FV),+FV0) + FPh,+F2%) +q,+q,,a
qt = {qlT ‘-]2T (-1/<T qn} q/sT: {le(nkfl) f;A}T

where I, is a k x k unit matrix, NV = 1+Z - n, and N® =%}, n.. FO, FY and F® are
given by replacing d;; by d}”, d“’ and d$? in F, respectively; F" and F@ are given by replacing
e’ by ¢!l and e in F©, respectlvely, and d;, dy, d, d}, ey, e,(,”, d are elements of D,
D, Df,‘), D, EY, E{ and Ef, respectively. Replacing f,, by /i, a.x in q, gives q, a,-

Similarly, the dlfference equation of boundary condition (6) is
M1 poar (X)) + N1 oa(X2) =7 (12)

where
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The solution of (11) under boundary restriction (12) is
77r+9Az(x) = J‘ G(Xa 5) : qr+6Az(é) dé +H(x) * Vet oAt (13)
in which
eF.x,[M,eFxl_i_N,esz]fl .M.eF(«\‘lfcf) é <X
GO =1 | . . (14a)
_ex.[M.e I+ N-e xz] ‘N-eft2=9 E>x
H(x) = ¢" - [M*e"™1 4+ N-ef2] 7! (14b)

Having #,,9a,(x) known from (13), #,,9a,(x) and #,,a.(x) are calculated by the following
formulas

1-28

1
it t = o a o \Us t z_eAt.r — =5 15a
i+ 0a ﬁ(@Az)zm con—1 1) 2p (15a)
771+HA1 = 771+6Al{(1 —V)’?z +Vﬁ1+HA1} (15b)
and the values of n at t+ At are given by
. 1. 1\
Mivar = 5’7r+9m+ 1— 0 M, (162)
Nivar = 7;]:+At{(1 _V)ﬁ1+yﬁr+At} (16b)
., (An? . )
Nivar = 77I+Al’/]z+ D) {(1 _2ﬂ)nr+2ﬂ7//r+m} (16C)

Therefore, if ,, ,, i1, are known, 1, o,» 7,4 as» 71,4 o, €an be found from the above derived formulas.
Because q, ¢4, of (11) is related to both the external loads and the transient response #,, #;, 7,
15, i, 177, the integral of (13) is not easy to be calculated exactly. Approximate integral is proposed
for it. The region [x;,x,] is divided into n sub-regions [x©,x'"Y] with x, =x" <
xP << x? < x0PD <o < x0FD = x, In each sub-region, n,, 1/, 11,, . ii,, if, are interpolated
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Fig. 1. A one-dimensional distributed parameter system.

by their values at x'” (i =1,2,...,n+1) in low order polynomials. Then, the integral of (13) can
be done with no difficulties. For the part of integral of (13) related to external loads, numerical
approximation can also be used. The benefits of this approximation are the saving of CPU time
and the possibility of computer codes for general purposes. In the numerical examples presented
in the following sections, these approximate procedures are used.

3. Complex systems composed of multiple 1-dimensional sub-systems

Dynamic systems made of multiple one-dimensional sub-systems are studied in this section.
Figure 1 is an example where the dynamic system includes two beams, a rigid body, a spring-
damper, a spring and a bar. The formulas derived previously are valid for each one-dimensional
sub-system. The ends of each one-dimensional sub-system are called nodes and the nodal parameter
vector are defined as

d (x;)
_ d, . diz(xi)
d; (x;)

where i = 1 and 2,

a i t apkil i t : k
&Wﬁ=%ﬂﬁﬂwg)”.aﬁg ?,m=ETLk=LL”m

[v] denotes the integer part of y.
The boundary condition matrices of (12) are simplified to

B,

M=[]B},N=meq,B= B,
0(N/‘2) x N B .

B

n
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Bk = [0

Pr X Tk ka X Pk Oﬁk x -Yk]

Wlth Vk == Zl;:_ll I’l, and Sk = pk+z_7:k+1 I’l,
For a linear system, the generalized force vectors are related to state space vector #(x, ) by
following constitutive relation

o(x, 1) =S n(x, ?) (18)

where S 1s the constitutive matrix.
At time 7+ 0A¢, we have

Orvon = S- i+ oA (19)
Plugging (13) into (19) gives

00 on =K 9 0a+q7 (i=1,2) (20)
where i = 1 and 2 are the ends of the sub-system, and

K?” =S-H(x,)

q’ =S- J G(x1, ©) " qrsoar(S) dE

X1

At each node, assembling equilibrium equations according to equilibrium of forces, following
simultaneous linear algebraic equations will be obtained

K:d=Q (21)

in which K, d and Q are the global stiffness matrix, nodal parameter vector and load vector,
respectively. Applying proper boundary conditions, (21) is solved in the standard way to give the
nodal parameter vector. Then, #,, 4a,(x) can be found from (13) for each subsystem.

4. Transient response of a simple Euler—Bernoulli beam

For a specific problem, the dynamic equations and boundary conditions are generally much
simpler than that of Section 2. Therefore, more direct derivations will be used in the following two
sections. Moreover, to make the statements simpler, the Wilson-0 method is used. The transient
response of a simple Euler—Bernoulli beam is first analyzed to illustrate the efficiency of the present
method. The governing equations are

) ) otw  Ow 0*w
Dynamic equation: El—, +c— +pA— = f(x,1) (22)
ox* ot ot

Initial conditions: w(x,0) = w, (x),a—v: = vy(x) (23)
0

t=
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3

0 ~
Boundary conditions: (1) w(x,,t) = Ww,(f) or Ela—v: = Q,(?) (24a)
X" X=X;
ow N o*w ~
@ G| =B or—EIr G| =M (24b)

in which ET is the bending stiffness, ¢ is the damping coefficient, pA4 is the mass density per unit
length, w(x, ?) is the flexure, f(x, f) is the external excitation, wy(x), vo(x), Wwi(1), O(1), pi(¢) and
M 1) (i = 1,2) are given functions.

Applying the Wilson-0 method to (22) gives the following difference—differential equations

Ela4wt+6m <3C 6pA

6)64 HAZ + QzAI > t+0At — f;+0(f;+Ar f)

3¢ 6pA 6pA 1 )
+<9A[ AL ) ,—|—<2¢—|— 0At>w,+<2c0At+2pA>w, (25)

The state space vector is defined as

d d2 d3 T
Nivoar = Wit oA awwom dx 7 2 Witoa: dx 3 Witoa: (26)

and the state space form of (25) is

d
anwom =F 110014 (27)
in which
r 1 0 T 0
0 1 0
1 /3¢ 6pA
_—El<gm+gzmz> 000 9
and

1 (. i 6pA 6pA
qs = H{fz+0(ft+m ft)+<9A[ 92Al‘2>w +<2C+ 0A> < LQA[-I-sz) }

The matrix form of boundary conditions (24) is

M 1,500 (X1) +N14 08, (X2) = 0y 4, + (1 =0)y, (28)
with
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q(X,t)
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Fig. 2. Simply supported beam subjected to alternating load.

10 0 0 Wiz
00 0 EI ).
B= , yNif_ Q~
01 0 0 ’ b
0 0 —EI 0 M,;

where subscript ‘7 takes values 7 or r+Af, i = 1 and 2, B and B* are 2 x 4 matrices called the
selective matrices of boundary conditions at the left and right ends of the beam, respectively. The
ith row of B” is corresponding to the ith boundary condition listed in (24). If the ith boundary
condition at the left end is a displacement condition, then

Bh, =1, B,=0 (j#2i—1)
Otherwise
Bh,=1; BL =0 (j#2i

B* is similar to B” except that it is related to the right end of the beam.

A simply supported beam subjected to an alternating load ¢ = ¢,(x) sin w7 (see Fig. 2) is analyzed
by the present method and numerical results are compared with that of the finite element method.
The material and geometric parameters are pA = 10, EI = 20, ¢ = 15, L = 3, and 0 = 1.4. Numeri-
cal results are given in Tables 1 and 2 where ¢,(x) = 10000[x — (L/2)], @ = 38 and 125, respectively.
It is easy to see that our method is very accurate and efficient. Taking the whole beam as one
element, its precision is better than that of the finite element method using 30 elements, and the
CPU time of the method is only about 40% of that consumed by FEM. Along with the increment
of frequency w, the advantages of our method becomes more obvious. When o < 38, the maximum
relative error of FEM using 30 elements is within 1%. When w = 125, it increases to 8%. However,
for our method, this error keeps within 0.5%. From Table 3, in which the beam is subjected to the
distributed load ¢,(x) = 1000(16/L*)[x— (L/2)]*, the same conclusions can be drawn. Undoubtedly,
this advantage is very useful, especially for high frequency response analysis, on-line control and
real-time simulation.
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Table 1
Middle point displacement of simply supported beam (v = 38, At = 0.01)

t=1 t=2 t=3 t=4 t=15 CPU time Method

0.0803 —0.6011 —0.8154 —0.6028 —0.3039 416 This paper
0.0823 —0.5728 —0.7486 —0.4945 —0.1691 199 FEM10 elements
0.0803 —0.5996 —0.8123 —0.5947 —0.2972 527 FEM20 elements
0.0803 —0.6008 —0.8153 —0.5997 —0.3038 1068 FEM30 elements
0.0803 —0.6010 —0.8159 —0.6008 —0.3053 2513 FEMS50 elements
0.0803 —0.6010 —0.8160 —0.6010 —0.3055 11,009 FEM100 elements
Table 2

Middle point displacement of simply supported beam (@ = 125, At = 0.005)

t=1 t=2 =13 t=4 t=35 CPU time Method

0.1721 0.07126 0.02917 0.00690 0.00702 825 This paper

0.1722 0.09197 0.04402 0.00852 0.02104 324 FEM10 elements
0.1719 0.07198 0.04073 0.00741 0.00743 1001 FEM20 elements
0.1720 0.07125 0.03135 0.00707 0.00708 2041 FEM30 elements
0.1720 0.07109 0.02931 0.00601 0.00700 4991 FEM 50 elements
0.1720 0.07107 0.02903 0.00688 0.00699 19,748 FEM100 elements
Table 3

Middle point displacement of simply supported beam (v = 76, At = 0.008)

t=1 t=2 =3 t=4 t=>5 CPU time Method
0.107432 0.059553 0.021923 0.008241 —0.010123 535 This paper
0.130218 0.066556 0.027726 0.005888 —0.018346 344 FEM10 elements
0.108739 0.059931 0.022300 0.008192 —0.010521 972 FEM20 elements
0.107588 0.059593 0.021967 0.008239 —0.010173 1601 FEM30 elements
0.107338 0.059518 0.021896 0.008248 —0.010098 4070 FEMS50 elements
0.107303 0.059507 0.021885 0.008249 —0.010087 12,481 FEM100 elements

5. Transient response of frame structures

To show the solution procedures and efficiency of the present method in the analysis of complex
one-dimensional systems, frame structures made of simple elastic beams are studied here. The local
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z(W) y(v)
r/ PN
> X(U)

Fig. 3. Local coordinate system of the beam.

coordinate system of the beam is defined as shown in Fig. 3 where y and z are the principle axes
of inertial of the cross-section of the beam. The dynamic equations are

Y LA L AP LAy S R, (29a,b)
~ 5 A x — Y Z A 4 A, Pl o, )y = a,
o2 Php oxt Pl e
o*w o*w o*w FoRa) FoRa)
ELSY oY o1 =0, 0L 51 C i =0 29¢.d
Vo TP G TPl T ot P er (29¢.d)

where u, v, w are the displacements in x-, y- and z-directions, ¢ is the torsion angle of the beam
cross-section about x-axis, I, I,, I. are the rotation inertias about x, y and z axes. « is the torsion
coefficient of the cross-section, f,, f, and f. are distributed external excitations.

Because the differential equations in (29) are not coupled, to raise the computer efficiency, the

state space vectors of the beam are defined as

du r
Miivone = {MH—()Ar (ti;()At} (30a)
dv d?v d’v T
M2i+0n0 = {Uwem (I{;:Al d;:zem d;@m} (30b)
sz+9At d2W1+9At d3Wt+9At 4
N3,i+0a0 = YWit0ac dx dx dx’ (30c)
do,on”
Naivrone = {q)r+0At C;-;OAI} (30d)
and (29) are cast into the following state space forms
d :
ani,zﬁmt =F;- Mii+0A¢ +f; (l =1,2,3, 4) (31)
where

0 1

0
F, = 6p ol f, = s
1

EO*Ar?
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I 0 07
0
0 1 0
0
F2 - O 5 f2 - 0
6pA 6p 1
ELO>Ar? EO*AP | ’
i 0 1 0 0
] 0
0 0 1 0 0
F, = 0 00 1 =4
6pA 6
L ELO’AP EO*Ar :
0 1
0
F4 = 6)0 0 > f4 = %4*}
aGO* A

and f*, £5%, f3* and f;* have similar definitions as g,.
The nodal displacement vectors of the beam are defined as

}T
X=X,

}T
X=X,

Y = {”r+0m(x1) ”:+0Ar(x2)}T

d
Y2 = {Uwﬁm(xl) avwem

U o (X2) avwem

X=X

d

Y3 = {Wr+9m(x1) awwem Wi oa(X2) awwem

X=X

Yo = {@rron(X1)  @rion(x2)}"
The boundary conditions are

M; 1 pon(X1) N 15 0a(X2) = 4

with
1 0 0 0
M, = , N, = fori=1,4and
00 10

L., 0, 0,., 0,,
M[:[“ “J, N,:[“ 22}f0ri:2and3.

02><2 02><2 IZ><2 2x2
In the local coordinate system, the internal force vector is
T T T T
o=1{ad] o} o} o4}

where

2819

(32a)

(32b)

(32c)

(32d)

(33)

(34)
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S77 777 > X

Fig. 4a. A plane frame subjected to in-plane alternating load.

—FEM 90
u - FEM 30
A . -—FEM15
*** This paper ;
.5} A
A
v \
.5}
-1

Fig. 4b. Transient response of node 1.

0; = Si'nia Sl = [0 EA]a S4 = [O OCGIx]

0 0 EL. 0 0 0 EI, 0
S, = , Sy =
00 0 —EL 00 0 —EI

Three different frame structures are analyzed to show the applications of the method. Each frame
structure is taken to consist of simple beams with the same material and geometric parameters.

(1) Transient response of a plane frame structure subjected to in-plane alternating load. The plane
frame structure is shown in Fig. 4a. The parameters used in calculation are p4 = 0.5, EI = 20,
EA = 200, L = 1. Numerical results for ¢(y, 1) = qo(4/L*) [y — (L/2)]? sin wt, in which ¢, = 5000
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Fig. 5a. A plane frame subjected to out-of-plane loads.
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Fig. 5b. Transient response in z-direction of node 2.

and o = 108, are illustrated in Fig. 4b. As a comparison, finite element solutions using 15, 30
and 90 elements are also shown.

Dynamic response of a plane frame subjected to out-of-plane alternating load. The plane frame
structure is shown in Fig. 5a. The parameters used in numerical simulation are E = 3 x 10,
G=12x10", p4 =10, L =60, I, =1, =100, af, = 125, J = 200. The distributed external
load ¢g(x, t) = 5000 sin(27x/L)s int. Transient responses of nodes 1 and 2 are illustrated in Fig.
Sb and Fig. 5c in which FEM results are obtained using 30 elements.

Space frame structure subjected to alternating load. The structure is shown in Fig. 6a. The
material and geometric parameters are the same as that of example 2. P, = 5000 sin ¢,
P, = 5000sin 3¢ and P; = 5000 sin 5¢. Transient responses of node A are illustrated in Figs 6b—
d in which FEM results use 80 elements.

6. Conclusions

Theoretical analysis and numerical simulation show that the method presented in this paper has
the following advantages:
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Fig. 6b. Transient response in x-direction of node A.
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Fig. 6d. Transient response in z-direction of node A.

It presents a new, semi-analytical method that avoids discretization of spatial coordinates. In
the analysis of one-dimensional distributed parameter systems, the method takes a one-
dimensional sub-system as one element and defines its end as nodes. Therefore, the scale of
the global nodal equilibrium equations is much smaller than that of FEM, and the solution
efficiency is much higher.

The exact and closed form solution in spatial coordinates raises the precision and efficiency
greatly. To find the transient response of a single beam, FEM has to use many elements,
especially for high frequency response. However, taking a single beam as an element, the
numerical error of our method is within 0.5% that is accurate enough for most engineering
applications.

The analytic procedure is standard and systematic for different physical and engineering
problems. If the governing differential equations, initial and boundary conditions are known,
the problem can be analyzed in a standard way. So does the computer coding. Therefore, the
method will be attractive for commercial software.

Although the discussion is limited to differential equations within constant coefficients, the
method presented in this paper can be extended to differential equations with variable coefficients
in which the solution for spatial variables should be obtained by approximate methods.
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